Bhumsuk Keam¹, Kidong Kim³, Vinod Ganju⁴, Lisi Elizabeth Lim⁵, Vineet Kwatra⁶, Amy Body^{7,8}, Paul Dong Rhee⁹, Wonkyung Lee⁹, Hosung Jang⁹, Young Su Noh⁹, Jin-Hee Ahn²

¹Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; ²Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ³Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, Republic of Korea; ⁴Peninsula and Southeast Oncology, Level 3 Frankston Private, 24-28 Frankston Flinders Road, Frankston, VIC 3199, Australia; ⁵Department of Medical Oncology, Ballarat Regional Integrated Cancer Centre, Ballarat, Victoria, Australia; ⁷Department of Medicine, Nursing and Health Sciences, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; 8Department of Oncology, Monash Health, Clayton, VIC 3168, Australia; 9Department of ONCO Clinical Research and Development, Hanmi Pharmaceutical Co., Ltd., Seoul, Republic of Korea

BACKGROUND

- Epigenetic dysregulation, particularly aberrant histone modifications, plays a pivotal role in cancer pathogenesis and progression. The polycomb repressive complex 2 (PRC2), comprised of EZH2 and EZH1, catalyzes histone H3 lysine 27 trimethylation (H3K27me3), leading to transcriptional silencing of tumor suppressor genes and cell cycle regulators¹. EZH2 overexpression and gain-of-function mutations are frequently observed across diverse solid malignancies, contributing to oncogenesis and poor clinical outcomes^{2,5}.
- While EZH2-selective inhibitors have shown clinical promise, emerging evidence suggests that EZH1 can functionally compensate for EZH2 depletion, potentially limiting therapeutic efficacy³. Dual inhibition of both EZH1 and EZH2 may enhance anti-tumor effects by preventing compensatory mechanisms⁴.
- HM97662 represents a novel, potent dual inhibitor of EZH1 and EZH2 with demonstrated robust preclinical efficacy against both wild-type and gain-of-function mutant EZH2 variants. This first-in-human phase I (NCT05598151) evaluates the safety, tolerability, pharmacokinetics, and preliminary anti-tumor activity of HM97662 in patients with advanced or metastatic solid tumors.

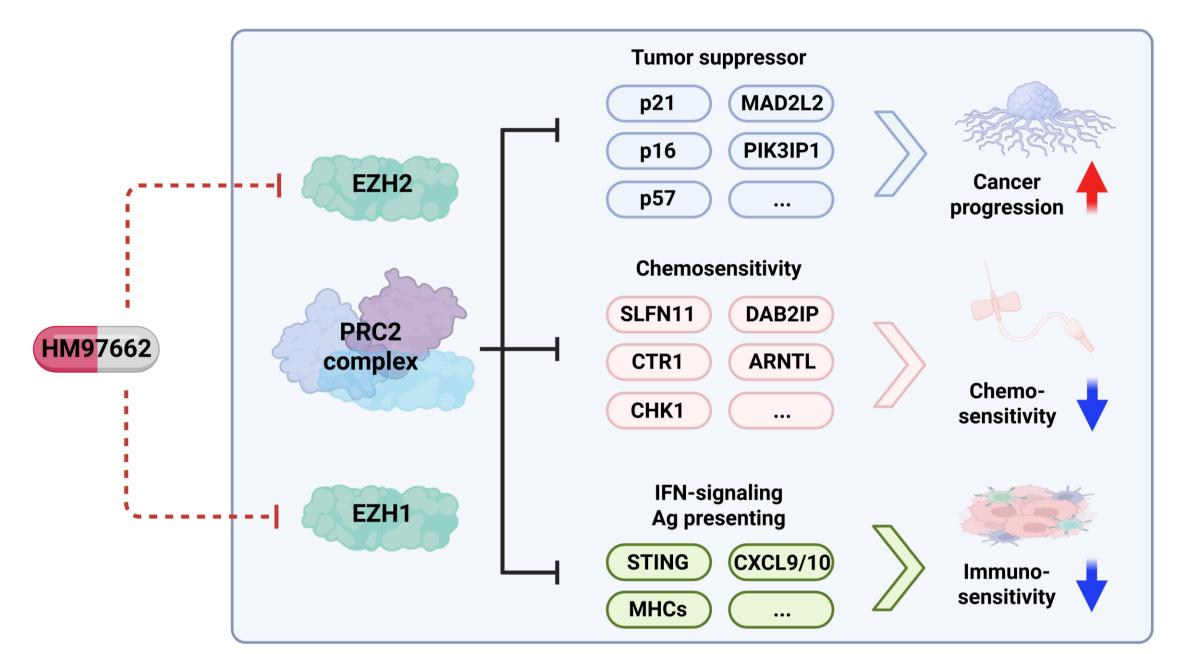
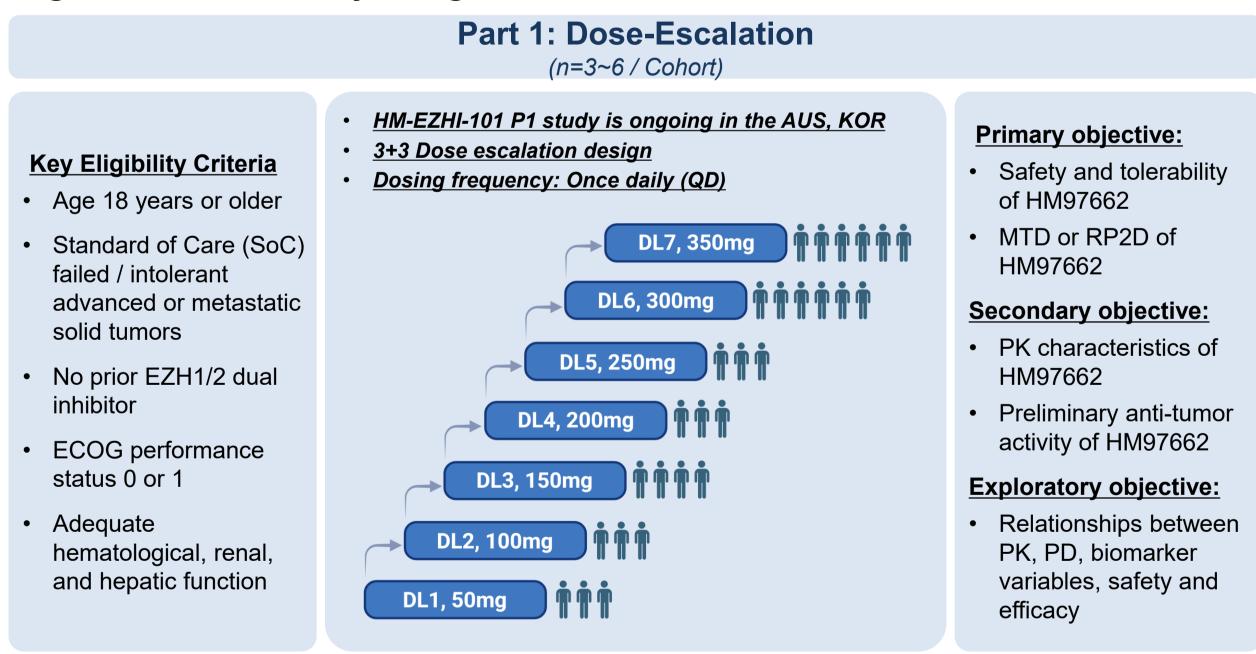
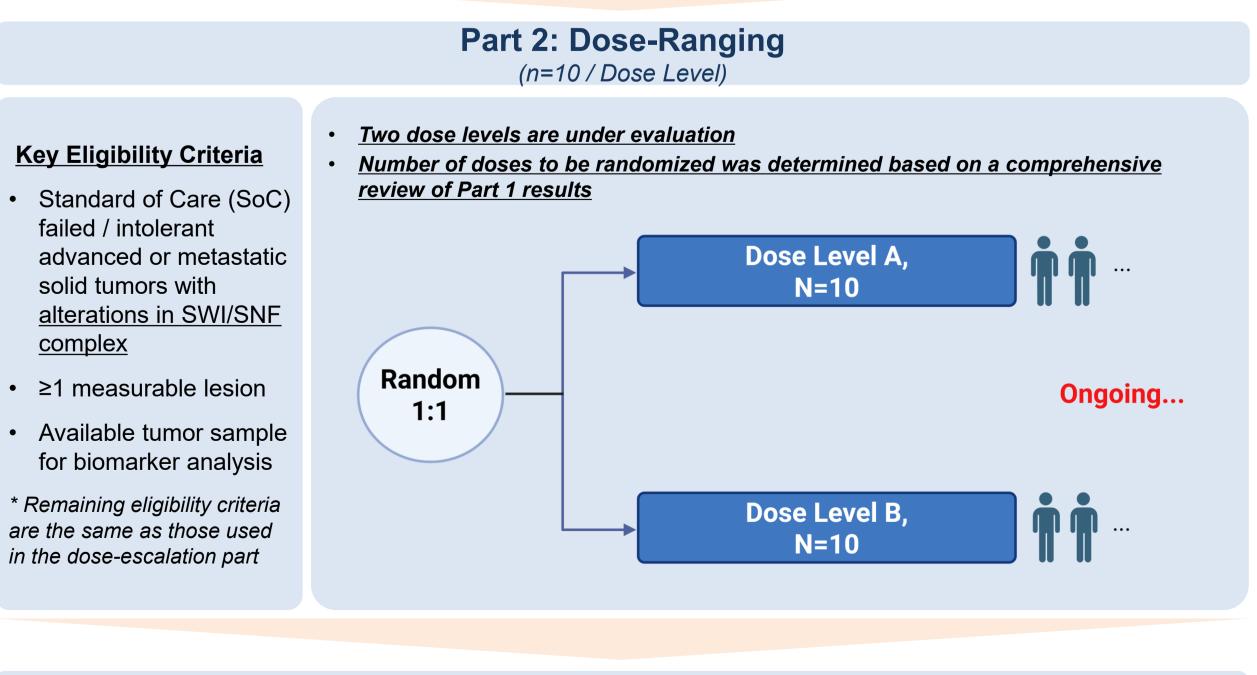




Figure 1. HM97662 Dual EZH1/2 Inhibition Modulates Oncogenic Pathways

METHODS

Figure 2. Phase I Study Design

Part 3: Dose-Expansion $(n=10\sim25 / Cohort)$

Further exploring efficacy and safety in indication-specific cohorts

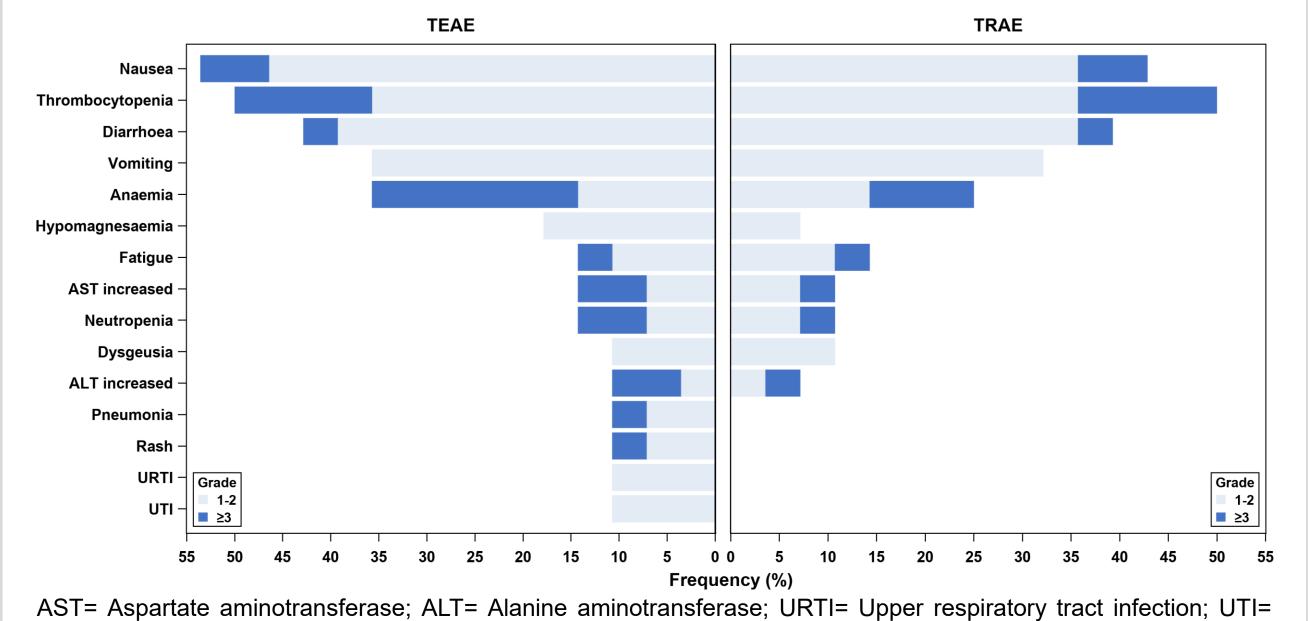
DL= Dose Level: MTD= Maximum Tolerated Dose: RP2D= Recommended Phase 2 Dose; PK= Pharmacokinetics; PD= Pharmacodynamics; ECOG= Eastern Cooperative Oncology Group

BASELINE CHARACTERISTICS

- As of 11 June 2025, 28 patients with solid tumor were treated across 7 dose levels (50 to 350 mg) (Table 1).
- Median prior lines of therapy were 4.0 (range: 0-7); 23 patients (82.1%) had received ≥2 lines of prior anti-tumor treatment.
- The most common tumor types included ovarian (n=6, 21.4%), pancreatic (n=4, 14.3%), and lung cancer (n=3, 10.7%).
- Although enrollment in the dose-escalation part was not restricted by genetic alterations, 39.3% (n=11) of patients harbored SWI/SNF complex alterations.

Table 1. Baseline Characteristics

Characteristics	Total (N = 28)	Characteristics	Total (N = 28)	
Age, Median (range) (years)	69.0 (28-87)	Cancer type, n (%)		
Sex, n (%)		Adrenal gland	1 (3.6)	
Male	13 (46.4)	Bladder	2 (7.1) 1 (3.6)	
Female	15 (53.6)	Breast		
	10 (00.0)	Gastroesophageal junction	1 (3.6)	
Race, n (%)		Head and neck	1 (3.6)	
Asian	14 (50.0)	Lung	3 (10.7)	
White	14 (50.0)	Ovary	6 (21.4)	
Baseline ECOG, n (%)		Pancreas	4 (14.3)	
0	10 (35.7)	Skin	1 (3.6)	
1	18 (64.3)	Other*	8 (28.6)	
Prior systemic anti-tumor therapy, n (%)	- (/	SWI/SNF complex alteration, n (%)		
	4.0.(0.7)	ARID1A	3 (10.7)	
Median (range)	4.0 (0-7)	SMARCB1	2 (7.1)	
<2	5 (17.9)	SMARCA4	5 (17.9)	
≥2	23 (82.1)	Other	1 (3.6)	


SAFETY AND TOLERABILITY

- No dose-limiting toxicity (DLT) occurred up to DL5 (250 mg). One patient each experienced a DLT(s) at DL6 (300 mg) and DL7 (350 mg).
- 26 (92.9%) patients experienced at least one treatment-emergent adverse events (TEAEs); 13 (46.4%) had ≥ Grade 3 TEAEs. The most TEAEs were nausea (n=15, 53.6%), thrombocytopenia (n=14, 50.0%), diarrhoea (n=12, 42.9%), anaemia (n=10, 35.7%), and vomiting (n=10, 35.7%).
- Treatment-related adverse events (TRAEs) occurred in 21 (75.0%) patients; 9 (32.1%) had ≥ Grade 3 TRAEs. The most common (≥20%) TRAEs were thrombocytopenia (n=14, 50.0%), nausea (n=12, 42.9%), diarrhoea (n=11, 39.3%), vomiting (n=9, 32.1%), and anaemia (n=7, 25.0%).
- TEAEs leading to dose modification occurred in 13 (46.4%) patients, and no TEAEs leading to discontinuation of study drug were reported.

Table 2. Overall Summary of Adverse Events

Type of AEs, n (%)	Total (N = 28)	Preferred Term, n (%)	Total (N = 28)	
TEAEs	26 (92.9)	Most frequently reported TEAEs (≥10%)		
TEAEs with Grade ≥3	13 (46.4)	Nausea	15 (53.6)	
	7 (25.0)	Thrombocytopenia	14 (50.0)	
SAEs		Diarrhoea	12 (42.9)	
TRAEs	21 (75.0)	Anaemia	10 (35.7)	
		Vomiting	10 (35.7)	
TRAEs with Grade ≥3	9 (32.1)	Hypomagnesaemia	5 (17.9)	
	,	Aspartate aminotransferase increased	4 (14.3)	
DLTs*	2 (8.7)	Fatigue	4 (14.3)	
TEAEs leading to does modification	13 (46.4)	Neutropenia	4 (14.3)	
TEAEs leading to dose modification		Alanine aminotransferase increased	3 (10.7)	
TEAEs leading to treatment discontinuation	0 (0.0)	Dysgeusia	3 (10.7)	
		Pneumonia	3 (10.7)	
TEAEs leading to death	0 (0.0)	Rash	3 (10.7)	
* Incidence is based on DLT evaluable population		Upper respiratory tract infection	3 (10.7)	
		Urinary tract infection	3 (10.7)	

Figure 3. The Most Common TEAEs (≥10%) and TRAEs (≥5%)

AEs were graded according to National Cancer Institute Common Terminology Criteria for AE (NCI-CTCAE) v5.0.

EFFICACY

Confirmed objective response:

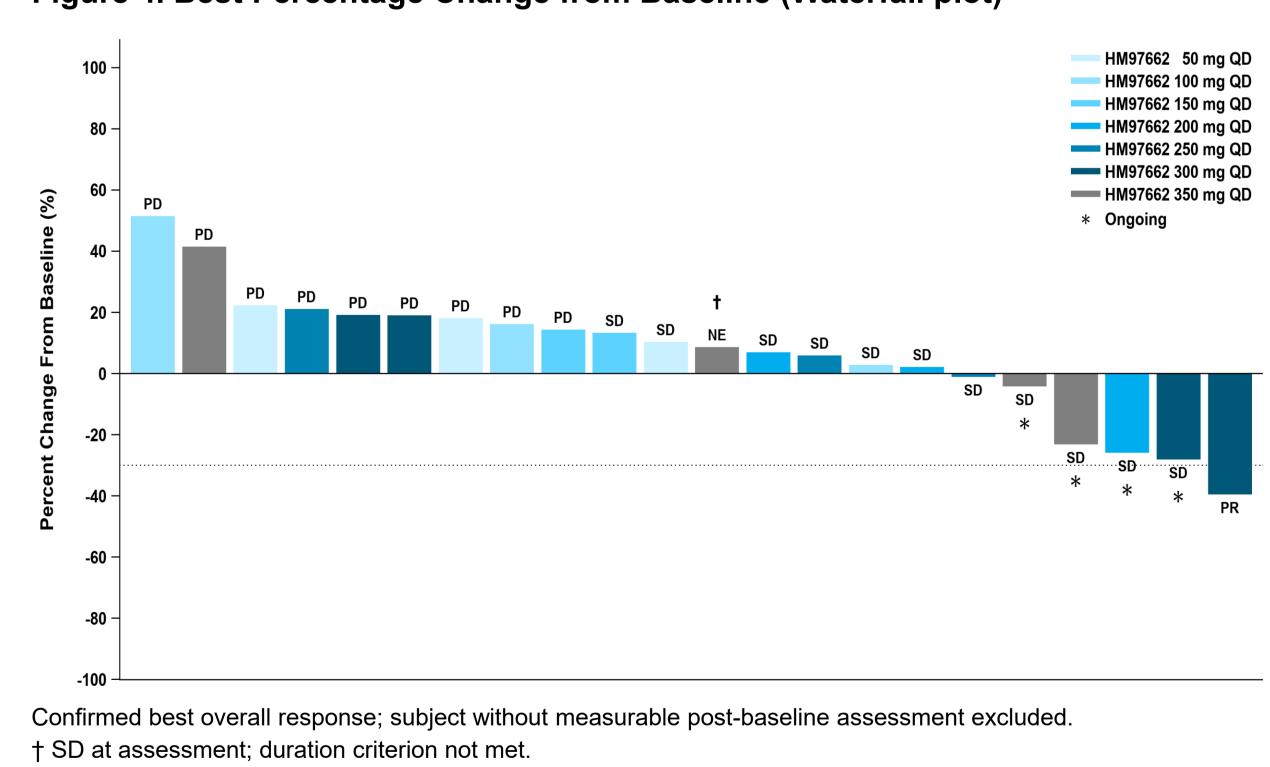
 One patient with SMARCA4-deficient uterine sarcoma achieved a confirmed partial response (PR) at 300 mg, with tumor shrinkage of -39% at cycle 5.

Durable disease stabilization:

 One patient with ovarian cancer at 200 mg achieved prolonged stable disease (SD), remaining on treatment for >20 cycles (>18 months) with best tumor shrinkage of -26%.

Disease control across tumor types:

Clinical benefit (PR + SD) was observed across multiple tumor types, including ovarian cancer, uterine sarcoma, pancreatic cancer, and NSCLC, demonstrating broad anti-tumor activity of HM97662 in diverse solid malignancies.


Activity in biomarker-selected populations:

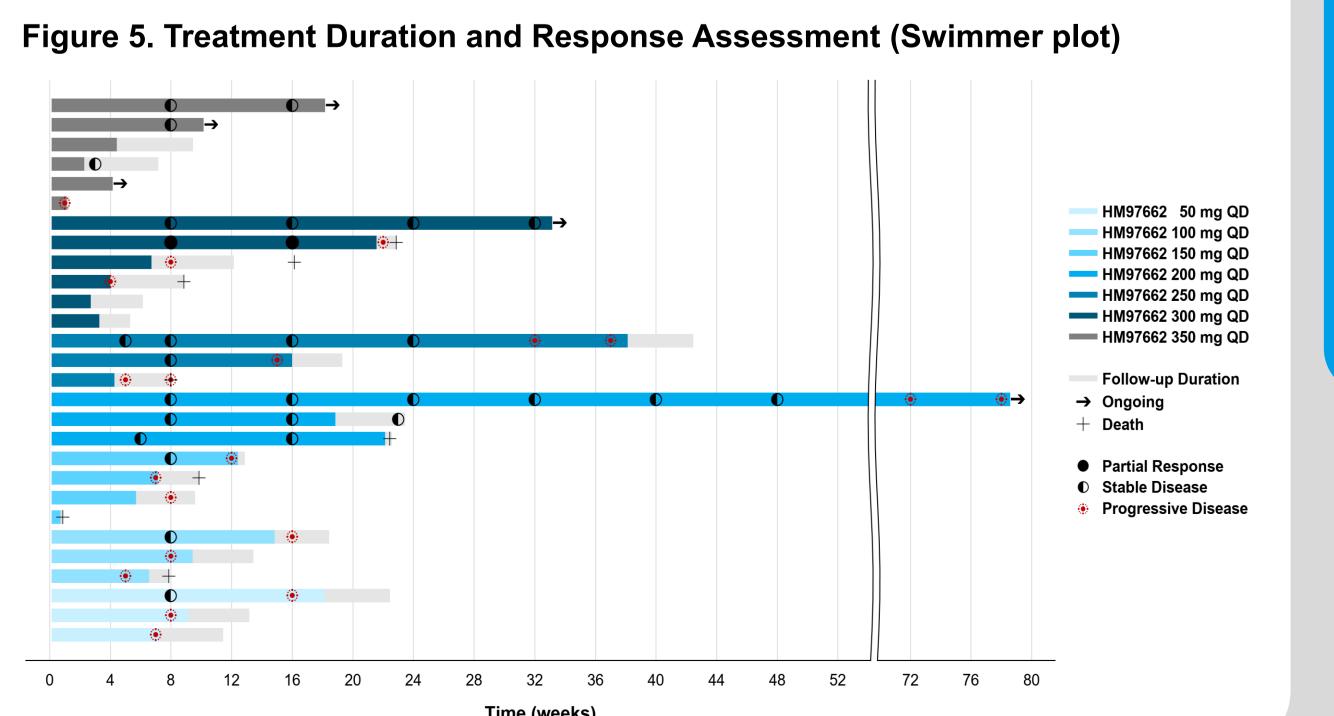

Notable clinical benefit was observed in tumors harboring chromatin remodeling pathway alterations (e.g., SMARCA4 deficiency, SMARCB1 mutation, etc.), consistent with the proposed mechanism of EZH1/2 dual inhibition.

Table 3. Overall Summary of Efficacy

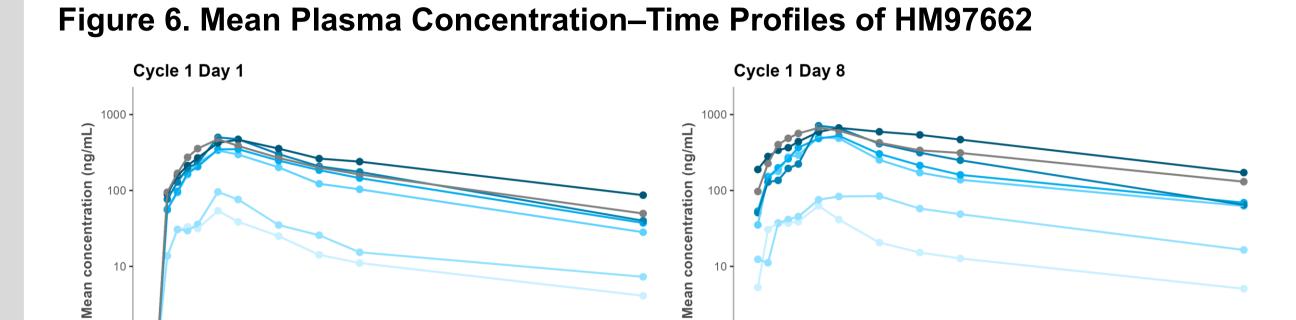
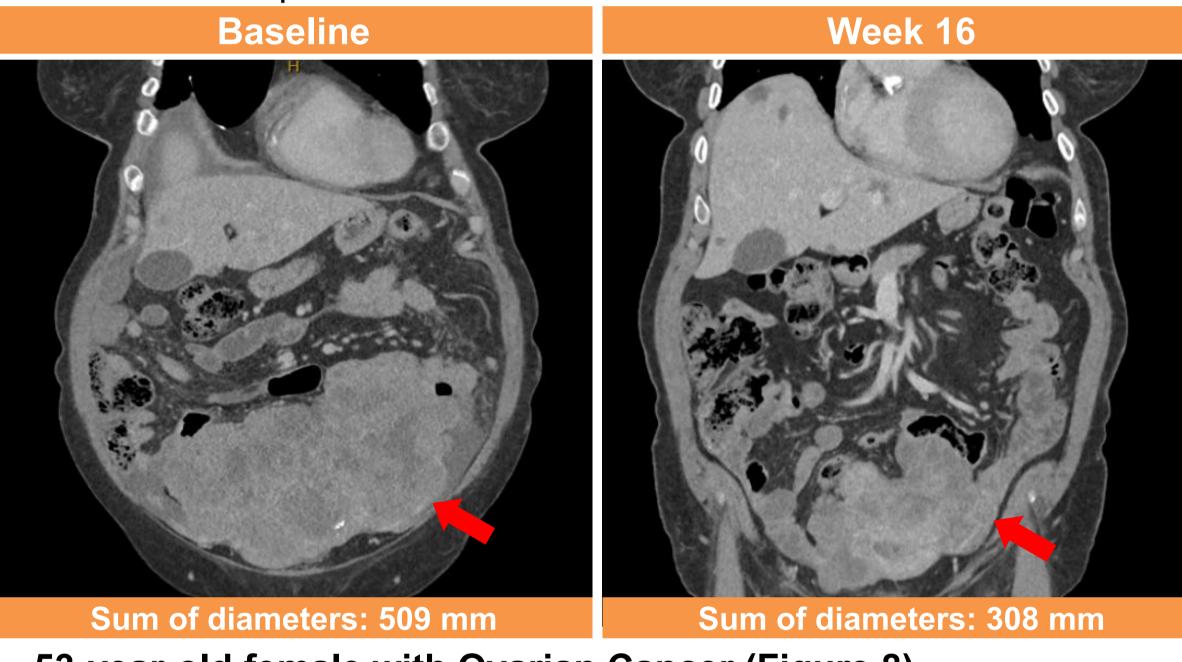

Dose, mg QD Response	50 (N=3)	100 (N=3)	150 (N=4)	200 (N=3)	250 (N=3)	300 (N=6)	350 (N=6)
Best overall response (BOR), n(%)							
Complete Response (CR)	0	0	0	0	0	0	0
Partial Response (PR)	0	0	0	0	0	1 (16.7)	0
Stable Disease (SD)	1 (33.3)	1 (33.3)	1 (25.0)	3 (100)	2 (66.7)	1 (16.7)	2 (33.3)
Progressive Disease (PD)	2 (66.7)	2 (66.7)	2 (50.0)	0	1 (33.3)	2 (33.3)	1 (16.7)
Not Evaluable (NE)	0	0	1 (25.0)*	0	0	2 (33.3)*	3 (50.0)*
Objective Response Rate (ORR)							
n (%)	0	0	0	0	0	1 (16.7)	0
95% CI	0, 70.8	0, 70.8	0, 60.2	0, 70.8	0, 70.8	0.4, 64.1	0, 45.9
Disease Control Rate (DCR)							
n (%)	1 (33.3)	1 (33.3)	1 (25.0)	3 (100)	2 (66.7)	2 (33.3)	2 (33.3)
95% CI	0.8, 90.6	0.8, 90.6	0.6, 80.6	29.2, 100	9.4, 99.2	4.3, 77.7	4.3, 77.7
n (%)	0.8, 90.6	0.8, 90.6	0.6, 80.6	29.2, 100	9.4, 99.2	4.3, 77.7	4.3,

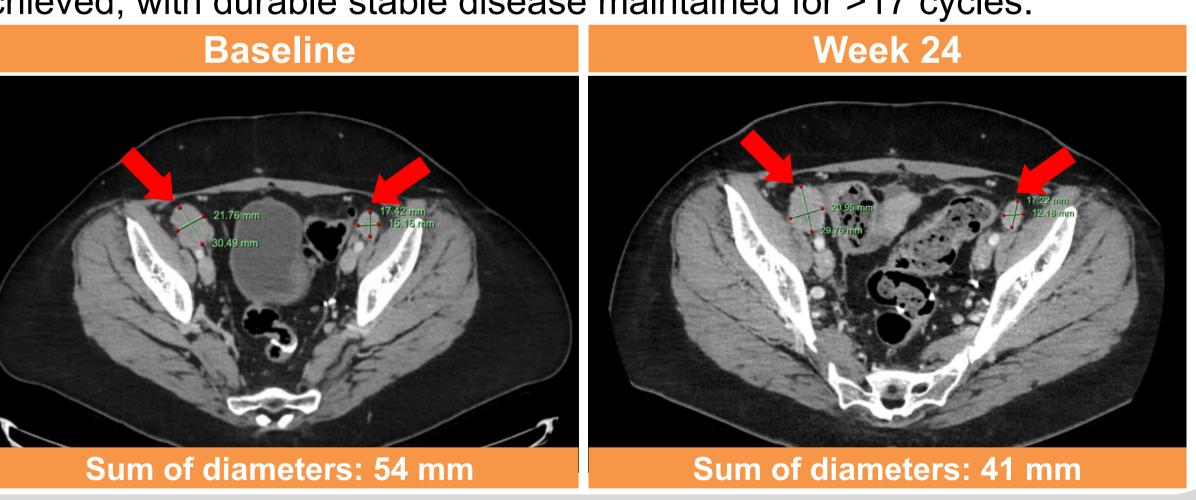
Figure 4. Best Percentage Change from Baseline (Waterfall plot)

PHARMACOKINETICS (PK)



- PK data were collected from 28 patients across 7 dose levels.
- HM97662 exposure generally increased with dose; a similar pattern was observed on C1D1 and C1D8.

CASE REPORTS


I. 67-year-old female with SMARCA4-deficient Uterine Sarcoma (Figure 7)

After receiving 4 cycles of HM97662 treatment (300 mg QD), a confirmed PR was achieved per RECIST v1.1.

2. 53-year-old female with Ovarian Cancer (Figure 8)

Treated at 200 mg QD, a maximum tumor reduction of -26% was achieved, with durable stable disease maintained for >17 cycles.

Concluding Remarks

- HM97662 demonstrated a manageable safety profile, with no discontinuations due to treatment-emergent adverse events.
- Preliminary pharmacokinetic data showed increased exposure with higher dose levels.
- Durable clinical activity was observed across multiple solid tumor types, highlighting the therapeutic potential of EZH1/2 dual inhibition.
- Responses in tumors with SWI/SNF complex alterations provided mechanistic support, suggesting a role for biomarker-informed strategies.
- HM97662 is emerging as a promising therapeutic option for patients with advanced solid tumors, warranting further clinical evaluation.

References

- 1. Margueron R, Reinberg D. Nature. 2011;469:343-349.
- 2. Kim KH, Roberts CW. Nat Med. 2016;22:128-134.
- Shen X, et al. Mol Cell. 2008;32:491-502.
 - Honma D, et al. Cancer Sci. 2017;108:2069-2078.
- 5. McCabe MT, et al. Nature. 2012;492:108-112.
- * The graphical representations were generated with BioRender.com