

A Phase I, Open-Label, Multicenter, Dose Escalation and Expansion Study of HM97662 (EZH1/2 dual inhibitor) as a Single Agent in Patients with Advanced or Metastatic Solid Tumors

Bhumsuk Keam¹, Jin-Hee Ahn², Kidong Kim³, Sung-Hoo Hong⁴, Vinod Ganju⁵, Lisi Elizabeth Lim⁶, Vineet Kwatra⁷, Amy Body^{8,9}, Paul Dong Rhee¹⁰, Sooa Jung¹⁰, Jiyeon Yoon¹⁰, Eunhye Baek¹⁰, Young Su Noh¹⁰

¹Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; ²Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, Republic of Korea; ⁴Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea; Seoul, Republic of Korea; Seoul, Seoul, Republic of Korea; S Oncology, Ballarat Regional Integrated Cancer Centre, Ballarat, Victoria, Australia; ⁷Cancer Research South Australia; ⁸Department of Medicine, Nursing and Health Sciences, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; ⁹Department of Oncology, Monash Medical Centre, Monash Health, Clayton, VIC 3168, Australia; ¹⁰Department of ONCO Clinical Research and Development, Hanmi Pharmaceutical Co., Ltd., Seoul, Republic of Korea

BACKGROUND

Enhancer of zeste homolog 2 (EZH2) and its close homolog EZH1 are pivotal components of the polycomb repressive complex 2 (PRC2), which is critical for the maintenance of epigenetic repression. These proteins mediate the tri-methylation of histone H3 at lysine 27 (H3K27me3), a modification associated with transcriptional silencing of genes involved in crucial cellular processes such as the cell cycle and differentiation. Dysregulation of EZH2, often through gain-of-function mutations or overexpression, leads to excessive H3K27me3 levels, contributing to tumorigenesis and poor clinical outcomes in various cancers¹.

- EZH2 to achieve a more effective inhibition of PRC2 activity.
- EZH2 inhibition⁴.
- inhibitor of EZH1 and EZH2.
- at nanomolar concentrations⁵.
- tumors.

PHARMACOLOGICAL ACTIVITY

PRC2 complex	Inhibition (IC ₅₀ , nM)		
	HM97662	Valemetostat	Tazemetostat
EZH1 WT	16	30	188
EZH2 WT	2.1	1.2	2.8
Selectivity ratio (EZH1/EZH2)	7.6	25	67

Antitumor activity and H3K27me3 regulation HT-1376 (Urothelial bladder cancer, UBC)

- + HM97662 were treated once daily via oral gavage for 28 consecutive days in BALB/c nude mice subcutaneously inoculated with HT-1376 bladder cancer cell line (p<0.01 or p<0.001 vs. vehicle, determined by ANOVA followed by Dunnett's test)
- + H3K27me3 / H3 (%) of each groups were determined in tumor after the oral administration of HM97662 on Day 14

B.K reports advisory board with Handok, Trial Informatics, ImmuneOncia, NeoImmuneTech, and BeiGene; invited * speaker with MSD, Eli Lilly, and LG Chem; local PI with MSD, AstraZeneca, Ono Pharmaceutical, and Bayer.

STUDY DEGISN

- This is a Phase I, open-label, multicenter study enrolling patients with advanced or metastatic solid tumors
- The study is comprised of 3 parts:
 - Part 1, Dose-Escalation: HM97662 will be administered orally at escalating doses once daily (QD)
 - Part 2, Dose-Ranging (randomized): More than one feasible dose will be selected and may be evaluated in 10 patients (with alterations in components of the SWI/SNF complex) per dose level
 - Part 3, Dose-Expansion: Stage 1 will enroll 10 patients per indicationspecific cohort. In Stage 2, an additional 15 patients will be enrolled per indication-specific cohort if the specified criteria are met

Key Eligibility Criteria

- Standard of Care (SoC) failed intolerant advanced or metastatic solid tumors
- No prior EZH1/2 dual inhibitor
- ECOG performance status 0 or 1
- Adequate hematological, renal and hepatic function

Part 1: Dose-Escalation $(n=3\sim6/\text{cohort})$

Dose level 7: 350 mg
Dose level 6: 300 mg
Dose level 5: 250 mg
Dose level 4: 200 mg
Dose level 3: 150 mg
Dose level 2: 100 mg
Dose level 1: 50 mg

CASE REPORT (with Clinical Benefit)

Data as of: Sep. 2024

Metastatic Ovarian Carcinoma (53 yrs / Female / ECOG PS 0)

nitial Diagnosis	Ovarian Carcinoma (High-grade serous) / Stage IV (Mag			
Prior Therapy (Metastatic setting)		1L: Carboplatin + Gemcitabine (Mar ~ Jul 2023, PR)2L: Carboplatin + Liposomal Doxorubicin (Nov ~ Nov 2023)		
Study Treatment	≻	Dose-Escalation Part: HM97662 200 mg (QD); Treatment		
Best Response		Stable Disease (SD) - Target lesions (lymph node, liver metastasis): -24% decr		
Baseline		Week 32		

In addition to EZH2, EZH1 can compensate for its function, particularly in contexts where EZH2 is depleted. This compensation highlights the potential of targeting both EZH1 and

- It is indicated that dual inhibition may provide enhanced antitumor effects compared to inhibiting EZH2 alone, as it may more effectively restore the expression of tumor-suppressive genes^{2,3}.

Furthermore, alterations in components of the SWI/SNF chromatin remodeling complex, such as ARID1A, SMARCA4, and SMARCB1, have been shown to interact synergistically with

Given these insights, we developed HM97662, a novel dual

- Preclinical studies have demonstrated that HM97662 effectively inhibits the methyltransferase activity of both wild-type EZH1 and EZH2, as well as various GOF mutant forms of EZH2,

With these promising results, a first-in-human Phase I study of HM97662 was initiated to evaluate its safety, pharmacokinetics, and early efficacy in patients with advanced or metastatic solid

STUDY STATUS

- ay 2021)
- , UNK) for 8+ months
- ease
- Patient accrual for this Phase I clinical study (NCT05598151) is being conducted in the Republic of Korea (4 sites) and Australia (4 sites)
- First Patient-In (FPI) was in January 2023, and the study has accrued 19 patients to date (September 2024) in Part 1 (Dose-Escalation)
- HM97662 showed manageable safety profile up to date (September 2024) with no Dose-Limiting Toxicities (DLTs) observed to date

Reference

- 1) Kim, K. H., et al. (2016). Nature Medicine, 22(2), 128-134
- 2) Bitler, B. G., et al. (2015). Nature Medicine, 21(3), 231-238
- 3) Lee, S. H., et al. (2022). BMB Reports, 55(12), 595-601
- 4) Rehman, H., et al. (2022). JCI Insight, 7(16), e155899
- 5) Jung, S. H., et al. (2021). Cancer Res 81(13): 1142