Neuroprotective effects of HM15211, a novel long-acting GLP-1/GIP/Glucagon tri-agonist in the MPTP Parkinson's disease mouse model

Eunjin Park¹, Sang-Hyun Lee¹, Jeong A Kim¹, In Young Choi¹, Young Hoon Kim¹, Young Mi Lee¹, Sun Jin Kim¹, Se Chang Kwon¹ ¹Hanmi Pharm. Co., Ltd, Seoul, South Korea

BACKGROUND

Obesity is one of the risk factors of neurological disorder¹

Alzheimer's disease

↑ BML T2DM ↑ AD risk Leptin/insulin resistance ↑ AD Leptin $\downarrow A\beta$, p-tau

Multiple sclerosis

Obesity ↑ MS risk ↓ insulin sensitivity in MS

Parkinson's disease

Insulin resistance, T2DM ↑ PD \uparrow Insulin levels $\uparrow \alpha$ -synuclein aggregation _eptin ↑ survival of DA cells

Huntington's disease

Abnormal fat cells function in HD

• Neuroprotective effects of GLP-1, GIP, and glucagon

AIMS

This study investigated the therapeutic potential of HM15211 in MPTP induced Parkinson's disease mouse model in behavior, pathologic and molecular aspects.

METHODS

- MPTP 30 mg/kg was intraperitoneally injected once-daily for 7 days into 9 weeks old C57BI/6 male mice. HM15211 (2.5 and 5.03 nmol/kg) was subcutaneously administered once at the first day, 30 min after the 1st MPTP administration.
- For motor function evaluation, behavior tests (traction test, pole test and rotarod test) were conducted before sacrifice. (n=19~20)
- To assess histological changes, hemisphere of all mice brain were sectioned using cryotome and stained. $(n=7\sim10)$
- The striatum were dissected from the other half of the brain and lysed with RIPA buffer to detect molecular changes using ELISA (n=7~10)
- Statistical analysis was performed using GraphPad Prism by one-way ANOVA, followed by Dunnett post-hoc analysis. A value of p < 0.05 was considered as statistically significant.

RESULTS

Motor function evaluation

Figure 1. Motor function restoring effects of HM15211

MPTP 30 mg/kg, QD >HM15211 administration restored MPTP induced motor function impairment in (a) traction test, (b, c) pole test and (d) rotarod test.

Traction test

Score 1: No gripping of the wire with either hind paws Score 2: Gripping of the wire with one hind paw Score 3: Gripping of the wire with both hind paws

Γ-turn: Time to turn their angle total: Time to land on all four paws

MPTP 30 mg/kg, QD + HM15211 5.03 nmol/kg, QW

Efficacy on dopaminergic neuroprotection

Figure 2. Neuroprotective effect of HM15211 against MPTP

>HM15211 administration protected MPTP induced dopaminergic neuronal cell damage in the striatum and the substantia nigra.

Effects on microglia activation and inflammatory cytokines

>In striatum of MPTP PD mouse model, the area covered by microglia was increased and the morphology of microglia was activated. Administration of HM15211 leads to reduction of microglia activation.

Figure 4. Effects of HM15211 on the expression of pro- and anti-inflammatory cytokine

>HM15211 reversed the induction of IFN- γ (a), IL-1 β (b) and the reduction of IL-10 (c) levels of mice induced by MPTP.

Effect on oxidative stress

Figure 5. Reduced lipid peroxidation by HM15211

> In the striatum, HM15211 effectively decreased the HNE protein adduct (a byproduct of lipid peroxidation), which was induced by MPTP.

CONCLUSIONS

- HM15211 significantly improved MPTP induced motor impairments in three behavior tests in a dose-dependent manner.
- Histologically, the tyrosine hydroxylase (TH) positive neurons in substantia nigra and the staining density in striatum were reduced by MPTP. However, they were protected by HM15211.
- In addition, HM15211 changed inflammatory cytokine expression and reduced lipid peroxidation byproduct in the MPTP PD model.
- Even after a single injection of HM15211, neuroprotective effects were shown against 7 days repeated MPTP injection.
- Based on these results, the novel long-acting GLP-1/GIP/Glucagon tri-agonist, HM15211 could have therapeutic potential for PD.

REFERENCES

- 1. Claudio Procaccini et al., *Metabolism.* 65(9):1376-90 (2016)
- 2. Yazhou Li et al., *Proc Natl Acad Sci U S A*. Jan 27;106(4):1285-90 (2009)
- 3. Rami Abu Fanne et al., Am J Physiol Regul Integr Comp Physiol 301: R668–R673 (2011)
- 4. Yanwei Li et al., *Neuropharmacology.* 101, 255e263 (2016)

Hanmi Pharm. Co., Ltd.