Effect of a novel long-acting GLP-1/GIP/glucagon triple agonist (HM15211) in a NASH and liver fibrosis animal models

Jung Kuk Kim¹, Jong Suk Lee¹, Dae Jin Kim¹, Eun Jin Park¹, Aram Lee¹, Young Hoon Kim¹, and In Young Choi¹ ¹Hanmi Pharm. Co., Ltd, Seoul, South Korea

BACKGROUND

Modulation of multiple aspects of NASH and liver fibrosis by HM15211 in comparison to the action of other drug candidates for NASH

AIMS

- Since multiple biological pathways are involved in the disease progression, therapeutic approach simultaneously targeting these pathways might be required to effectively treat NASH and fibrosis
- To address this, HM15211, a novel long-acting GLP-1/GIP/Glucagon triple agonist, has been developed
- In this study, we evaluated the therapeutic potential of HM15211 in NASH and fibrosis animal models

METHODS

- Therapeutic potential of HM15211 in NASH and fibrosis was evaluated in MCD-diet induced NASH mice (6 ~ 12 weeks induction). After 4 ~ 5 weeks treatment of HM15211, liver tissue samples were prepared to measure hepatic TG, TBARS, NASH/fibrosis-related marker gene expression (TNF- α , TGF- β , α -SMA, and Collagen-1 α 1). Blood liver function markers (ALT, bilirubin) were also determined
- To investigate the therapeutic effects of HM15211 in more human relevant disease model, biopsy-proven obese, NASH, and fibrosis monkeys (BMI >40 kg/m², NAS + fibrosis score > 7) were utilized. After 12 weeks treatment of HM15211 including 3 weeks titration period, body weight and blood lipid profiles were determined, and body composition was determined by DEXA. Liver biopsy samples were subjected to histologic analysis.
- To determine NAS (NAFLD activity score), the same region of each liver tissue was subjected to H&E staining. For fibrosis analysis, Sirius red staining and hepatic hydroxyproline analysis were performed

RESULTS

improvemen

Figure 2. Effect of HM15211 on NASH prognosis and inflammation marker expression in MCD-diet mice (n=7)

(a) Blood ALT

inflammation and HSC activation related marker expression, suggesting the antiinflammatory effects of HM15211

§ TBARS: Thiobarbituric acid reactive substances, oxidative stress marker HM15211 significantly reduced liver TG and TBARS independent of BWL (data not shown) in MCD-diet mice, suggesting its direct liver effect on steatosis

(c) Inflammation and HSC activation marker gene expression

Figure 3. Effect of HM15211 on NASH in MCD-diet mice (n=7) (a) NAS (b) H&E staining

* ~ **p<0.05 ~ 0.01 vs. MCD mice, vehicle by One-way ANOVA; †††p<0.001 vs. Liragluitide by One-way ANOVA Consistently, HM15211 completely reversed NAS to normal level

Fibrosis improvement in MCD mice

Figure 4. Effect of HM15211 on hepatic fibrosis in MCD-diet mice (n=7)

(a) Hepatic collagen-1α1 expression

(b) Hepatic hydroxyproline and fibrosis score

 \succ HM15211 reduced hepatic expression of collagen-1 α 1, hydroxyproline contents, and fibrosis score in MCD-diet mice regardless of fibrosis stage

Therapeutic efficacy in obese/NASH monkeys

Figure 5. Effect of HM15211 on body composition and blood lipid profiles in obese/NASH monkeys

(a) DEXA image

(b) Changes in blood lipid profiles

In obese/NASH NHP, HM15211 reduced fat mass, and improved blood lipid profiles

Figure 6. Effect of HM15211 in obese/NASH monkeys

Baseline

(b) H&E staining

* ~ **p<0.0 5 ~0.01 vs. vehicle by un-paired t-test

Post treatment

> Relatively short-term treatment of HM15211 led to meaningful improvement in NAS + fibrosis score (vs. vehicle) in obese/NASH NHP

CONCLUSIONS

- •HM15211, a novel long-acting triple agonist, is designed to treat NASH and fibrosis by aiming multiple pathways involved in NASH and fibrosis progression
- In rodent NASH models, HM15211 reduces liver fat, inflammation marker expression, leading to NASH resolution
- In addition, HM15211 has potential to improve fibrosis in rodent NASH and fibrosis models regardless of fibrosis stage
- Beneficial effects of HM15211 on NASH and fibrosis improvement are well-translated in obese/NASH NHP
- Therefore, HM15211 might be a novel therapeutic option for NASH and fibrosis

Hanmi Pharm. Co., Ltd.