Potential of a novel long-acting glucagon analogue, HM15136, for the treatment of obesity

¹Hanmi Pharm. Co., Ltd, Seoul, South Korea

BACKGROUND

- Poor solubility and stability of native GCG limited its long-term pharmacologic investigation
- To overcome these limitation, HM15136 was developed, and its therapeutic potential in obesity was evaluated

AIMS

- We hypothesized that sustained GCG receptor (GCGR) activation could provide substantial BWL along with insulin resistance (IR) improvement and considerably reduced hyperglycemic risk
- To investigate our hypothesis, we developed HM15136, a novel long-acting GCG analog, with improved solubility and stability,
- The present study evaluated the PK/PD properties of HM15136.

METHODS

- Solubility of HM15136 and its solution stability were evaluated using liquid chromatography analysis. The intrinsic activity of HM15136 was determined by measuring intracellular cAMP accumulation in CHO cells stably or transiently expressing GCGR from various species (data not shown). For PK assessments, blood samples were collected after single subcutaneous or intravenous administration of HM15136 in ICR mice, SD rats, and beagle dogs, followed by quantification of blood HM15136 concentration using an ELISA.
- To evaluate the potential therapeutic efficacy in obesity, dietinduced obesity (DIO) mice were chronically administered with HM15136, and BW, BG, and food intake (FI) were monitored.
- To investigate the FI inhibition-independent BWL mechanism, BW change in DIO mice was compared with liraglutide under pair-fed controlled condition.

RESULTS

Table 1. Solubility of HM15136

Test article				
Glucagon				

HM15136

Figure 1. Physical stability of HM15136 in PBS (pH 7.0) at 25°C

>HM15136 shows improved solubility and physical stability at physiological pH

PK properties of HM15136

Figure 2. PK in various animal species (n=3), and human PK prediction (b) SD rats

(a) ICR mice

Jae Hyuk Choi¹, Jung Kuk Kim¹, Jin Young Kim¹, Sun Myung Lee¹, CheongByeol Shin¹, Jong Soo Lee¹, Sang Hyun Lee¹, and In Young Choi¹

Improved solubility & physical stability of HM15136

Solubility at pH 7.0
0.03 mg/mL
≥ 150 mg/mL

Table 2. PK parameters of HM15136

	ICR mice	SD rats	Beagle dogs	Human (prediction)		
T _{max} (hr)	24hr	48 ~ 64hr	32 ~ 64hr	129hr		
T _{1/2} (hr)	32.3 ~ 56.2hr	40.9 ~ 54.8hr	26.6 ~ 34.9hr	155.2hr		
BA (%)	≥ 76.9%	≥ 89.2%	>100%	-		

>After LAPS-conjugation, HM15136 showed prolonged PK properties in various animal species. Simulated PK suggests the once-weekly dosing potential of HM15136 in human

In vivo efficacy in animal models of obesity

>Chronic treatment of HM15136 led to dose-dependent BWL in DIO mice, demonstrating the anti-obese effect of HM15136

Figure 4. Efficacy of HM15136 compared with liraglutide for BWL in DIO mice under with pair feeding (n=7)

> Unlike liraglutide, HM15136 provided more BWL than pair-fed group, suggesting satiety-independent BWL mechanism

***p<0.001 vs. vehicle by One-way ANOVA

Safety assessment: G/I tolerability

Figure 5. Effect of HM15136 on saccharin water preference in

>HM15136 showed more saccharin water preference than liraglutide, suggesting reduced nausea and vomiting risk

CONCLUSIONS

- HM15136 is a novel long-acting glucagon analog with improved solubility and stability at physiological pH
- In DIO mice, HM15136 shows dose-dependent BWL. BG elevation is observed only during initial treatment phase, which is rapidly normalized (767-P)
- Unlike GLP-1RA, HM15136 shows food intake-independent BWL mechanism; WAT browning and enhanced energy expenditure might be involved (781-P)
- Compared to GLP-1RA, HM15136 shows more saccharin water preference in mice, suggesting mitigated nausea and vomiting incidence
- Therefore, HM15136 might be a novel therapeutic option for the treatment of obesity

REFERENCES

- Pocai A et al., Diabetes 58, 2258-66 (2009)
- Campbell JE and Drucker DJ., *Nat Rev Endocrinol.* **11**, 329-38 (2015)
- Muller TD et al., Physiol Rev. 97, 721-66 (2017)
- Kim T et al., Diabetes 67, 2157-66 (2018)

Hanmi Pharm. Co., Ltd.